}?>
By Joining you agree to MachPrinciple's Terms and Conditions and Privacy Policy
Click to Login
Please check your email. A registration confirmation link will be sent to your mailbox..
A registration confirmation link has been sent to your email. Please check your email and finish the registration process.
Search a Conference through our dedicated search page
Combinatorics is one of the fastest growing areas in contemporary Mathematics,and much of this growth is due to the connections and interactions with other areas of Mathematics. This program is devoted to the very vibrant and active area of interaction between Combinatorics with Geometry and Topology. That is, we focus on (1) the study of the combinatorial properties or structure of geometric and topological objects and (2) the development of geometric and topological techniques to answer combinatorial problems. Key examples of geometric objects with intricate combinatorial structure are point configurations and matroids, hyperplane and subspace arrangements, polytopes and polyhedra, lattices, convex bodies, and sphere packings. Examples of topology in action answering combinatorial challenges are the by now classical Lovasz's solution of the Kneser conjecture, which yielded functorial approaches to graph coloring, and the more recent, extensive topological machinery.