We reach more than 65,000 registered users in Dec!! Register Now
Prehistoric human migration in Southeast Asia driven by sea-level rise, NTU Singapore study reveals
- February 08, 2023
- 36 Views
- 0 Likes
- 0 Comment
Findings shed light on how climate change can shape the genetics of populations in a profound way
An interdisciplinary team of scientists at Nanyang Technological University,
Singapore (NTU, Singapore) has found that rapid sea-level rise drove early settlers
in Southeast Asia to migrate during the prehistoric period, increasing the genetic
diversity of the region today.
The Malay Peninsula and the islands of Sumatra, Borneo, and Java were originally
part of a large landmass of rainforests and coastal mangroves in the South Asia
continental shelf known as ‘The Sundaland’ some 26,000 years ago (Figure a).
But during the last major period of global warming in Earth’s history, from the Last
Glacial Maximum period (approximately 26,000 - 20,000 years ago) to the mid-50
Holocene (approximately 6,000 years ago), sea level rose 130 metres. The rise in sea
level flooded and submerged half of The Sundaland, breaking land bridges and
splitting the large landmass into smaller islands of the region today.
To understand the impact on humans living in The Sundaland during one of the most
dramatic sea-level rises in the Earth’s history, the team of NTU Singapore scientists
reconstructed the history of the landmass using two different approaches:
paleogeography – the study of historical physical landscapes, and population genetics.
Lead investigator, Assistant Professor Kim Hie Lim from NTU’s Asian School of
the Environment (ASE), and the Singapore Centre for Environmental Life
Sciences Engineering (SCELSE) at NTU said, “Environmental changes have
profound impacts on human history, driving population migration, growth, and
distribution. However, less discussed is how environmental changes can shape the
genetics of populations. Our work is the first reported instance to provide proof that
sea-level rise changed the genetic makeup of human populations in Southeast Asia –
a legacy that continues to impact current populations.”
Using data for Southeast and South Asia’s sea-level history, including ancient
Singapore records established by the NTU’s Earth Observatory of Singapore (EOS)
and ASE1
, the research team constructed paleogeographic maps dating from 26,000
years ago to the present.
The NTU team also used whole-genome sequence data from 59 ethnic groups,
including that belonging to populations native to Southeast and South Asia from
50,000 years ago. By analysing the high-quality genome data, the team was able to
infer the genetic ancestry and demographic history of the groups, including their
population size and distribution.
While researchers elsewhere have studied population history based on genetics, most
of them used mitochondrial DNA (genes inherited from the mother), which does not
tell the full picture of individual ancestry.
By using whole-genome sequence data – precise information of an individual's entire
genetic makeup inherited from both the mother and the father – the NTU study offers
an unbiased demographic history of the indigenous populations inhabiting The
Sundaland.
The whole-genome sequence data was generated by the non-profit organisation
GenomeAsia 100K. Launched in 2016 and hosted by NTU, the initiative aims to better
understand the genome diversity of Asian ethnicities by sequencing 100,000 genomes
of people living in Asia.
Contributing author, Professor Stephan Schuster, President’s Chair in Genomics
at NTU’s School of Biological Sciences, Research Director of SCELSE, and
Scientific Chair of GenomeAsia 100K, said, “GenomeAsia 100K systematically
generates maps of Asian human genetic diversity, including indigenous ethnicities who
have occupied the region for a long time. Integrating those maps with paleoclimatic
data allows us now to understand exactly how past climatic events have resulted in
ancient human migrations, as well as their impact on today's population structure.”
The research is aligned with the NTU 2025 strategy, where the University adopts more
collaborative, global and interdisciplinary means of research to address Singapore’s
national research priorities, such as health & society.
Piecing together the story of human migration in ancient Sundaland
Combining findings from the two approaches, the scientists inferred the changes in
population density from the high quality historical paleogeographic maps generated.
The map paints a picture of prehistoric human migration in The Sundaland, showing
that the earliest documented instance of forced human migration was driven by sea
level rise.
The scientists found that two periods of rapid sea level rise (rates of sea level rise at46
mm/year and 22 mm/year) 2
promoted the separation of populations into smaller
groups across The Sundaland, as the large landmass became split into smaller islands,
forcing people to disperse.
Even as the landmass decreased after the rapid sea level rises, temperature increased
from the Last Glacial Maximum, creating a favourable living environment to support
human population growth. This caused population density to surge by at least eight
times from the Last Glacial Maximum, especially in the Island Southeast Asian region,
including Malay Peninsula, Sumatra, and Borneo (Figure b).
As a result, overpopulation drove people to migrate in search of new places to settle
and the people in The Sundaland later migrated back northwards, towards Mainland
Southeast Asia and South Asia (Figure c).
This finding is supported by evidence of migration by the ancestors of the Malaysian
indigenous group (Malaysia Negrito, or commonly referred to as ‘Orang Asli’) into
South Asian tribal groups (Austroasiatic speakers). Genetic analysis confirmed
common genetic ancestry between the Malaysian and South Asian indigenous groups.
The entire process of migration therefore shaped the diverse ethnicities across
Southeast and South Asian regions, as early settlers of The Sundaland interbred
across different indigenous groups.
Co-author of the study, Dr Li Tanghua, Senior Research Fellow at NTU’s EOS said,
“Based on our findings, the Orang Asli Malaysian indigenous group can be considered
the first ‘casualties’ of sea-level rise, or what are known as ‘climate refugees’ today.
The population had no choice but to move from their original territory due to
environmental pressures. This forced migration caused an indelible change to the
genetic footprint of South Asians, contributing to one of the most ethnically diverse
regions in the world.”
Findings useful to understand impact of sea level rise on human ancestry
The study, published in the peer-reviewed journal Communications Biology in
February, is the first to trace the impact of prehistoric sea level rise to human ancestry
in Southeast Asia.
Co-author of the study, Professor Benjamin Horton, Director of NTU’s EOS, said,
“The study of past sea levels is essential to predicting how increasing amounts of
atmospheric carbon dioxide will alter Earth's climate and raise future sea levels. These
projections inform how societies can mitigate and adapt to climate change impacts.”
Moving forward, the NTU team is looking to extend their research, to trace the story of
human migration from North Asia to America, and other parts of Southeast Asia.
List of Referenes
- Hie Lim Kim, Tanghua Li, Namrata Kalsi, Hung Tran The Nguyen, Timothy A. Shaw, Khai C. Ang, Keith C. Cheng, Aakrosh Ratan, W. Richard Peltier, Dhrubajyoti Samanta, Mahesh Pratapneni, Stephan C. Schuster, Benjamin P. Horton. Prehistoric human migration between Sundaland and South Asia was driven by sea-level rise. Communications Biology, 2023; 6 (1) DOI: 10.1038/s42003-023-04510-0
Cite This Article as
No tags found for this post