We reach more than 65,000 registered users in Dec!! Register Now

Researchers Identify How Physical Activity Protects the Brain—Cell by Cell—in Alzheimer's Disease
- June 18, 2025
- 33 Views
- 0 Likes
- 0 Comment
Scientists have uncovered how exercise directly influences brain health in Alzheimer's disease by pinpointing the exact brain cells affected. Using cutting-edge RNA sequencing and mouse models, researchers identified changes in specific cells like microglia and a novel type of astrocyte after exercise.
Using advanced single-nuclei RNA sequencing (snRNA-seq) and a widely used preclinical model for Alzheimer’s disease, researchers from Mass General Brigham and collaborators at SUNY Upstate Medical University have identified specific brain cell types that responded most to exercise. These findings, which were validated in samples from people, shed light on the connection between exercise and brain health and point to future drug targets. Results are published in Nature Neuroscience.
“While we’ve long known that exercise helps protect the brain, we didn’t fully understand which cells were responsible or how it worked at a molecular level,” said senior author Christiane Wrann, DVM, PhD, a neuroscientist and leader of the Program in Neuroprotection in Exercise at the Mass General Brigham Heart and Vascular Institute and the McCance Center for Brain Health at Massachusetts General Hospital. “Now, we have a detailed map of how exercise impacts each major cell type in the memory center of the brain in Alzheimer’s disease.”
The researchers exercised a common mouse model for Alzheimer’s disease using running wheels, which improved their memory compared to the sedentary counterparts. They then analyzed gene activity across thousands of individual brain cells, finding that exercise changed activity both in microglia, a disease-associated population of brain cells, and in a specific type of neurovascular-associated astrocyte (NVA), newly discovered by the team, which are cells associated with blood vessels in the brain. Furthermore, the scientist identified the metabolic gene Atpif1 as an important regulator to create new neurons in the brain. “That we were able to modulate newborn neurons using our new target genes set underscores the promise our study,” said lead author Joana Da Rocha, PhD, a postdoctoral fellow working in Dr. Wrann’s lab.
To ensure the findings were relevant to humans, the team validated their discoveries in a large dataset of human Alzheimer’s brain tissue, finding striking similarities.
“This work not only sheds light on how exercise benefits the brain but also uncovers potential cell-specific targets for future Alzheimer’s therapies,” said Nathan Tucker, a biostatistician at SUNY Upstate Medical University and co-senior of the study. “Our study offers a valuable resource for the scientific community investigating Alzheimer’s prevention and treatment.”
Read the paper(opens external link in new tab)Authorship: In addition to da Rocha and Wrann, Mass General Brigham authors include Renhao Luo, Pius Schlachter, Luis Moreira, Mohamed Ariff Iqbal, Paula Kuhn, Sophia Valaris, Mohammad R. Islam, Gabriele M. Gassner, Sofia Mazuera, Kaela Healy, Sanjana Shastri, Nathaniel B. Hibbert, Kristen V. Moran-Figueroa, Erin B. Haley, Sema Aygar, and Ksenia V. Kastanenka. Additional authors include Michelle L. Lance, Robert S. Gardner, Ryan D. Pfeiffer, Logan Brase, Oscar Harari, Bruno A. Benitez, and Nathan R. Tucker.
Disclosures: Wrann is an academic co-founder and consultant for Aevum Therapeutics. Wrann has a financial interest in Aevum Therapeutics, a company developing drugs that harness the protective molecular mechanisms of exercise to treat neurodegenerative and neuromuscular disorders. Wrann's interests were reviewed and are managed by Massachusetts General Hospital and Mass General Brigham in accordance with their conflict of interest policies.
List of Referenes
- Joana F. da Rocha, Michelle L. Lance, Renhao Luo, Pius Schlachter, Luis Moreira, Mohamed Ariff Iqbal, Paula Kuhn, Robert S. Gardner, Sophia Valaris, Mohammad R. Islam, Gabriele M. Gassner, Sofia Mazuera, Kaela Healy, Sanjana Shastri, Nathaniel B. Hibbert, Kristen V. Moran-Figueroa, Erin B. Haley, Ryan D. Pfeiffer, Sema Aygar, Ksenia V. Kastanenka, Logan Brase, Oscar Harari, Bruno A. Benitez, Nathan R. Tucker, Christiane D. Wrann. Protective exercise responses in the dentate gyrus of Alzheimer’s disease mouse model revealed with single-nucleus RNA-sequencing. Nature Neuroscience, 2025; DOI: 10.1038/s41593-025-01971-w
Cite This Article as
No tags found for this post